
Designated cast-as-intended verification and
universal proof of vote correctness from Chameleon

hashes
Tamara Finogina

UPC, Scytl

Abstract—This paper presents an e-voting scheme where a
voter can verify that her vote has not been changed without
requiring to perform any complex computations or rely on pre-
delivered information from election authorities. Additionally the
scheme allows everyone to verify that all published encrypted
votes contain a valid voting option inside. The underlying
verification mechanism is inspired by the Challenge-AND-cast
method proposed in the work of Guasch and Morillo [7].

Index Terms—electronic voting, cast as intended verifiability,
chameleon hash

I. INTRODUCTION

Consider the following situation very common in electronic
voting. A voter interacts with a voting system to cast her vote
for a preferred voting option and wants to obtain a proof that
the option inside the encrypted vote has not been changed
by a malicious voting device and was included into a ballot
box unmodified i.e. she wants cast-as-intended (CAI) and
recorded-as-cast verification. Additionally, it is desirable, that
an honest voter cannot prove how she voted after voting phase
is over i.e. system should be receipt-free.

There are different ways to enable CAI verification: choice
return codes[4], ballot tracking numbers[11], Quick Response
(QR) codes storing the encryption randomness[8], cast-or-
challenge mechanism[1], etc. Most of the approaches either
require voters to perform complex computations in order to
validate proofs extracted from a voting device or rely on some
secret information delivered to them prior to the election.
The former forces voters to use a separate device to handle
computations, which according to the research [9] might
discourage voters from verifying their votes. The latter means
existence of untappable channels between election authorities
and each voter, since the delivered information should not be
known to anyone but the voter.

An alternative would be to interact with a voter in order
to convince her that her intent has not been changed. In such
case, only voter herself would be convinced by the CAI proof
since only she witnessed the interaction. Moreover, if voting
device will additionally simulate proofs for all non-selected
options, the proof verification can be outsourced to a public
verifier without breaking the voter privacy.

This work presents a universal OR and designated pre-
image zero-knowledge proof system (section III), that was
inspired by the Challenge-AND-cast technique presented by
Guasch and Morillo in [7]. Our method allows voting device
to generate OR proof showing to everyone that the encrypted
vote contains one of the valid voting options and simultane-
ously convincing the voter and only the voter, that the vote

encrypts her intended option. The sketch of e-voting system
with CAI verification based on this method is in section IV,
the further improvements are discussed in section V.

II. PRELIMINARIES

a) ElGamal Public Key Encryption: ElGamal encryp-
tion scheme [3] is an asymmetric key encryption algorithm for
public-key cryptography which is based on the discrete loga-
rithm problem. It is composed of the following algorithms.
Gen: The key generation protocol takes as input a prime

number q and a generator g of a cyclic group G of order
q, samples a secret key sk

$← Zq , computes the matching
public key is pk = gsk and outputs key pair (pk, sk).

Enc: The encryption protocol takes as input a public key pk

and a message m ∈ G, then sample a random value
r

$← Zq and outputs the ciphertext C = (c1, c2), where
c1 = gr and c2 = m · pkr.

Dec: The decryption protocol takes as input the secret key
sk and a ciphertext C = (c1, c2) ∈ G × G, and outputs
c2/c

sk
1 = m.

b) Chameleon Hash: The chameleon hash function
scheme [10] is a trapdoor collision-resistant function that
behaves as an ordinary collision-resistant function whenever
the trapdoor is not used. However, with the trapdoor, collisions
can be found easily. We use a chameleon hash function
scheme based on the discrete logarithm problem from [7] that
is composed by the following algorithms:
Gench: takes as input group parameters (p, q, g), samples a

trapdoor key x $← Zq , computes an evaluation key h =
gx and outputs chameleon hash scheme keys (h, x).

Hch: takes as input an evaluation key h, a message m ∈ Zq
and a random ψ ∈ Zq and outputs a commitment cch =
gmhψ ∈ G.

H−1ch : takes as input the trapdoor key x, two messages
m,m′ ∈ Zq and a random ψ ∈ Zq and returns a value
ψ′ = (m−m′)x−1 + ψ ∈ Zq .

Chameleon hashes have the following properties:
Collision resistance: If given only h, Pr[(m,ψ) 6=

(m′, ψ′) : Hch(h,m,ψ) = Hch(h,m′, ψ′)] ≈ 0.
Uniformity: ∀m ∈ Zq and ∀ψ uniformly distributed in Zq ,

cch is uniformly distributed in G.
c) Interactive zero-knowledge proof systems: Let us

consider two probabilistic polynomial time (PPT) algorithms,
the prover P and the verifier V, and let a prover P to have
some secret witness w of the fact that some public element x

XVI RECSI, Lleida 2021 101

T. Finogina XVI RECSI, Lleida 2021

belongs to some language LR, where R ⊂ X ×W is a binary
relation and LR = {x ∈ X | ∃w ∈ W s.t.(x,w) ∈ R}. In
an interactive zero-knowledge proof system, the prover P and
a verifier V interact, and the goal of this interaction is for
P to convince V that it knows a secret witness w such that
x ∈ LR. Typically, three properties are required for such a
protocol [5]:
• Completeness: if both P and V are honest and (x,w) ∈
R, then the verifier always accepts the proof as valid.

• Soundness: if P is dishonest and (x,w) /∈ R, then the
verifier does not accept the proof as valid.

• Zero-Knowledge: the execution of the protocol does not
leak any information about the secret witness w. This is
formalized requiring, for every verifier V∗, the existence
of a polynomial-time simulator MV∗ such that for every
(x,w) ∈ R the output 〈P (x,w) , V∗(x)〉 is identically
distributed to the output MV∗(x).
d) Sigma protocols: Let P, V and R be as above. A

three-move interactive protocol 〈P, V〉 with transcript (a, e, z),
where the first message a is sent by the prover and e is a
randomly distributed value drawn from a suitable challenge
space of size t, it is a Σ-protocol for R if it is complete (in
the above sense) and the following holds [2],[6]:
Special soundness: There exists a PPT algorithm K, such that

from any x ∈ LR, and any pair of accepting transcripts
(a, e, z), (a, e′, z′) it holds Pr[(x,w) ∈ R | w ←
K(x, (a, e, z), (a, e′, z′)] ≥ 1− negl(t).

Special honest-verifier zero-knolwedge: There exists a PPT
algorithm MR, which on input x and a random e, outputs
an accepting transcript (a, e, z) with the same probability
distribution as 〈P, V〉.

Example: Proving in Zero-Knowledge that C is an ElGamal
encryption of m.

Suppose the prover P has encrypted the message m, using
ElGamal and randomness r ∈ Zq , and the result is the
ciphertext c = (c1, c2) = (gr,m · pkr). To convince V that
c is indeed encryption of m, P and V will engage in a zero-
knowledge proof of the equality of two discrete logarithms
that works as follows:

1) P samples s $← Zq , then sends as the first message the
commitment a = (a1, a2) = (gs, pks).

2) V chooses uniformly at random a challenge e $← Zq and
sends it to P.

3) P computes z = s+ e · r mod q and sends it to V.
4) V accepts the proof as valid if the two following equalities

hold: gz = a1 · ce1 and pkz = a2 ·
(
c2
m

)e
.

To simulate the proof, a simulator M takes (c,m), samples
z, e

$← Zq uniformly at random, computes a1 = gz · c−e1 and
a2 = pkz ·

(
c2
m

)−e
and outputs a, e, z, where a = (a1, a2).

III. DESIGNATED VERIFICATION OF A STATEMENT FROM A
SET WITH UNIVERSAL SET MEMBERSHIP VERIFICATION

Suppose there are n possible valid voting option M =
(m1, . . . ,mn). The voter wants to make sure that an ElGamal
encryption c = (c1, c2) = (gr;mi · pkr) contains her intent
mi, while everyone else wants to verify that c contains some
option from the set M i.e. c is an encryption of a valid option.
Such verification provides CAI verification to the voter and
proof of vote correctness to everyone.

Formally, it means constructing designated proof for the
index i known to V that an i-th statement xi = (c1,

c2
mi

)

of the set X =
(

(c1,
c2
m1

), . . . , (c1,
c2
mn

)
)

belongs to
LR and an OR proof that X ∈ LOR, where LOR =
{(x1, . . . , xn), w| ∃i s.t. xi ∈ LR} and LR = {(x,w) |
x = (gw; pkw)}. Note that due to Decisional Diffie-Hellman
(DDH) assumption it is hard to decide in polynomial time if
a statement from set X belongs to LR or not.

To construct designated verification combined with OR
proof, P generates non-interactive fake proofs for all ∀xj ∈
X \ xi s.t. xj /∈ LR and starts an interactive real proof
generation for xi ∈ LR. To generate a real proof π, P executes
the first step of the Σ-protocol to get a commitment H to the
real proof, then engages in an interaction with V to obtain a
random challenge γ according to which the real proof will be
modified π̂. The modification is such that only real proof can
pass verification after the modification. After the interaction,
P outputs n − 1 fake proofs {π∗j } and a modified real proof
π̂. To avoid a trivial correlation, all proofs are output in the
indices-based order. The workflow is presented in Figure 1.

V P

i ∈ (1, n)−−−−−→
Generates fake proofs {π∗j } for j ∈ (1, n), j 6= i

Samples challenge ψi
$← Zq for the real proof

Computes commitment H to the real proof π
H←−−−−−
γ−−−−−→

Modifies the real proof π using γ to get π̂
Set Π = {π∗j }

⋃
π̂ ordered based on indices

Π←−−−−−
Figure 1. Interaction between P and V.

To fake proofs for non instances of LR, P will use a
simulator for an interactive Σ-protocol MV∗ and trapdoor
collision of a chameleon hash function. If LR is a hard-to-
distinguish language inside X , thus the simulator MV∗ must
work also when the input element xj is not in the language,
that is xj ∈ X \ LR. Furthermore, any polynomial-time
distinguisher will fail in distinguishing the joint distributions
(xi, MV∗(xi))xi←LR and (xj , MV∗(xj))xj←X\LR ; if this was
not the case, such a distinguisher could be used to distinguish
the language LR inside X .

Remaining section organization is the following: first part
(Section III-A) shows a designated pre-image zero-knowledge
proof system based on chameleon hashes, the second (Section
III-B) proves that the proposed scheme is correct, sound and
honest-verifier zero knowledge, while the third (Section III-C)
shows how it can be applied to a set of statements to obtain
designated verification combined with universal membership
verification.

A. Designated pre-image zero-knowledge proof system based
on chameleon hashes

All algorithms described in this section take as implicit in-
put a common reference string crs = (q, g,G, pk,M,aux),

102 Designated cast-as-intended verification and universal proof vote correctness from Chameleon hashes

XVI RECSI, Lleida 2021 T. Finogina

where g is a generator of a cyclic group G of a prime order
q, p = 2q + 1 is a safe prime, pk ∈ G is a public ElGamal
encryption key, M = (m1, . . . ,mn) is a set of valid voting
options and aux is an auxiliary information.

Additionally we require two collision-resistant hash func-
tions Hash1 : {0, 1}∗ → Zq and Hash2 : {0, 1}∗ → M (the
space of t-bits values that voter can remember). The second
hash function is necessary for the usability as a voter cannot
be expected to remember large strings of random data.

The scheme consist of the seven algorithms GenKeys,
NIZKProveOriginal, ZKProveModified,
ZKSimulate, GetCommitment, ZKVerify,
ZKVerifyDesignated defined as follows:

GenKeys: runs Gench(q, g,G) and outputs chameleon hash
scheme keys (h, x).

NIZKProveOriginal: receives as input an ElGamal ci-
phertext c = (c1, c2), a true selection mi ∈ M s.t.
(c1,

c2
mi

) ∈ LR, the trapdoor key x and a chameleon
challenge ψ for the real proof. Then it does the following:

Samples a random element s $← Zq
a← (gs, pks).
H ← Hash2(c1,

c2
mi
, a, ψ, x,crs).

Outputs the first step of the Σ-protocol (a, s) and the
commitment to the real proof H .

ZKProveModified: receives as input an ElGamal cipher-
text c = (c1, c2), a true selection mi ∈M s.t. (c1,

c2
mi

) ∈
LR, the values (a, s) and the chameleon challenge ψ for
the real proof, the randomness r used for the ciphertext,
a challenge γ and the chameleon hash keys (h, x). Then
it does the following:
â← aγ .
ê← Hash1

(
Hch
(
h, Hash1(c1,

c2
mi
, â, x,crs), ψ

))

ẑ ← sγ + êr.
Outputs the proof π̂ = (â, ê, ẑ, ψ)

ZKSimulate: takes as input an ElGamal ciphertext c =
(c1, c2), a message mj ∈ M s.t. (c1,

c2
mj

) /∈ LR, the
chameleon hash scheme keys (h, x). Then it does the
following:

Sample random elements z∗, α, β $← Zq .
e∗ ← Hash1

(
Hch(h, α, β)

)

a∗ ← (gz
∗
c−e

∗

1 , pkz
∗
(c2mj

)−e
∗
).

ψ∗ ← H−1ch (x, α, Hash1(c1,
c2
mj
, a∗, x,crs), β).

Outputs the proof π∗ = (a∗, e∗, z∗, ψ∗).
GetCommitment: receives as input a proof π =

(a, e, z, ψ), an ElGamal ciphertext c = (c1, c2), a mes-
sage m ∈M , a challenge γ, a trapdoor key x and outputs
a commitment H = Hash2(c1,

c2
m , (a)γ

−1

, ψ, x,crs).
ZKVerify: receives as input proofs {πj =

(aj , ej , zj , ψj ,)}nj=1 for all messages in M ,
commitments to the proofs {hj}nj=1, the ElGamal
ciphertext c = (c1, c2), a challenge γ and the chameleon
hash keys (h, x). Then it returns > if and only all
checks are correct. Otherwise it outputs ⊥.

Checks h ?
= gx.

For j from 1 to n:

e← Hash1

(
Hch
(
h, Hash1(c1,

c2
mj
, a, x,crs), ψj

))

Checks ej
?
= e

Checks (gzj ; pkzj)
?
= (aj1c

ej
1 ; aj2(c2mj

)ej), where
aj = (aj1, aj2)

Checks H ?
= GetCommitment(π, c,mj , γ, x).

ZKVerifyDesignated: receives as input the commitment
H given by P before V introduced the challenge, the
intended option mi, the mapping table {γ||mj ||Hj}nj=1

and the challenge γ∗ introduced by V. Then it returns >
if and only if all checks are correct. Otherwise it outputs
⊥.
Finds line γ||mi||Hi that corresponds to mi.
Checks γ ?

= γ∗

Checks H ?
= Hi.

B. Security of the proposed zero-knowledge proof system

Theorem 1. The scheme defined in the Section III is complete
if the underlying Σ-protocol is complete and the chameleon
hash function fulfills the property of correctness.

Proof: The completeness of the protocol follows easily
from the inspection.

Theorem 2. The scheme defined in Section III is sound in
the random oracle model if the underlying Σ-protocol has the
special soundness property and the challenge γ is a random
value.

Proof: Assume that there exist an adversary A that is
able to produce two proofs π0 = ((a01, a02), e0, z0, ψ0) , π1 =
((a11, a12), e1, z1, ψ1) and commitments to these proofs
H0, H1 for the statement (c,m) for two different challenges
γ0, γ1 such that commitments are identical i.e. H0 = H1 =
H .

Recall, that a commitment to the original proof is verified
as follows:
H0 = Hash2(c1,

c2
m , (a

γ−1
0

01 , a
γ−1
0

02), ψ0, x0,crs).

H1 = Hash2(c1,
c2
m , (a

γ−1
1

11 , a
γ−1
1

12), ψ1, x1,crs).
Assuming probability of a collision of a hash function

Hash2 is negligible, we have that H0 = H1 if and only if
all inputs are identical. Therefore:
ψ0 = ψ1 = ψ,
x0 = x1 = x,
(a01)γ

−1
0 = (a11)γ

−1
1 = a1,

(a02)γ
−1
0 = (a12)γ

−1
1 = a2.

Since, both proofs are correct, then verification of the
underlying Σ-proof must hold. In other words:
(gz0 ; pkz0) = (a01c

e0
1 ; a02(c2m)e0) = (aγ01 c

e0
1 ; aγ02 (c2m)e0)

(gz1 ; pkz1) = (a11c
e1
1 ; a12(c2m)e1) = (aγ11 c

e1
1 ; aγ12 (c2m)e1).

Thus, either (a1, a2) is a commitment of a real Σ-protocol
or there is a simulator S∗ that generates a∗ = (a∗1, a

∗
2)

such that for any γ there are z∗, e∗ such that (gz
∗
; pkz

∗
) =

(a∗1)γce
∗

1 ; (a∗2)γ(c2m)e
∗
). However, such S∗ can be used to

break the special soundness property of a Σ protocol. There-
fore, (a1, a2) is a commitment to a real Σ-protocol and
the witness r is extractable: z0γ−10 − z1γ

−1
1 = sγ0γ

−1
0 +

re0γ
−1
0 − sγ1γ−11 − re1γ−11 = r(e0γ

−1
0 − e1γ−11). Therefore,

z0γ
−1
0 −z1γ−1

1

e0γ
−1
0 −e1γ−1

1

= r

Theorem 3. The scheme defined in Section III is honest-zero

Designated cast-as-intended verification and universal proof vote correctness from Chameleon hashes 103

T. Finogina XVI RECSI, Lleida 2021

knowledge in the common reference string model if the Σ-
protocol is honest-zero knowledge verifier.

Proof: Consider two proofs π̂ = (â, ê, ẑ, ψ̂) and
π∗ = (a∗, e∗, z∗, ψ∗) generated by ZKProveModified and
ZKSimulate respectively.

From the zero-knowledge property of the Σ-protocol, we
have that (a, z) of the real Σ-protocol execution and (a∗, z∗)
produced by a simulator are indistinguishable. Recall, that in
the modified proof ẑ = sγ + rê is generated in the same
way as z = s + re in the Σ-protocol but based on sγ
instead of s and using a chameleon hash challenge to compute
ê instead of a normal hash in e computation. Since γ is
invertible and not random and s is random, sγ is random.
Due to the uniformity property of chameleon hashes we get
that ê and e are indistinguishable. Also, a and â = aγ are
indistinguishable since LR is hard to distinguish. Therefore
π̂ and π are indistinguishable.

C. Designated verification combined with universal OR proof

The proposed zero-knowledge proof scheme can be con-
verted to a designated verification of a statement xi combined
with a universal set membership verification i.e. designated
xi ∈ LR and universal xi ∈ X , where X = {(c1, c2mj

)}mj∈M .
In other words, anyone will be able to check that an ElGamal
ciphertext c indeed encrypts a valid voting option, but only V

will be able to identify which option mi precisely.
To construct a universal set membership proof, we need

to make the challenge ψi of the real proof depend on
fake proofs. As before, P will run ZKSimulate for all
xj = (c1,

c2
mj

) ∈ X s.t. mj 6= mi to obtain a set of simulated
proofs {πj = (aj , ej , zj , ψj , x)}nj=1,j 6=i. However, instead
of sampling a random ψi for the real proof, P computes
ψi = Hash1(c,crs) − ∑n

j=1,j 6=i ψj and uses it to obtain
the commitment to the real statement h. After that, the
process goes identical to Fig. 1. The workflow for designated
verification combined with universal set membership check is
shown in Fig. 2.

V P

Runs GenCRS
Runs ZKSimulate for ∀mj 6= mi to get {π∗j }
Sets ψi = Hash1(c,crs)−∑n

j=1,j 6=i ψj
Runs NIZKProveOriginal with ψi to get H

H←−−−−
γ−−−−→

Runs ZKProveModified using γ to get π̂
Set Π = {π∗j }

⋃
π̂ ordered as set X

Π←−−−−
Figure 2. Interaction between P and V for achieving designated verification
of a statement xi = (c1,

c2
mi

) along with universal verification of a set
membership.

Theorem 4. Proof Π = {πj}⋃ π̂ for the statements in set
X = {xj}⋃xi, where {πj} are generated by ZKSimulate
and π̂ is an output of ZKProveModified defined Section
III, is a universal OR-proof that X ∈ LOR and designated

verifier proof that xi ∈ LR for the index i, when
∑
j ψj =

Hash1(c,crs).

Proof: Zero-knowledge proof scheme defined in Sec-
tion III is sound, therefore it is sufficient to show that
Π cannot contain only simulated proofs. For the sake of
contradiction, suppose it is possible to construct simulated
proofs and ensure that

∑
j ψj = Hash1(c,crs). This implies

that we can construct at least one simulated proof for an
option m∗ using a fixed value ψ∗. Recall, that ZKSimulate
uses the trapdoor x to obtain a value ψ∗ such that e∗ =
Hash1

(
Hch
(
h, Hash1(c1,

c2
m∗ , a

∗, x,crs), ψ∗
))

.
If ψ∗ is a fixed value, the equality above has a neg-

ligible chance to hold for fixed c1,
c2
m∗ ,crs and e∗, a∗

computed by the simulator S. Therefore, to construct a
simulated proof for a fixed ψ∗ it should be possible to
modify at least one of c1, c2m∗ , e

∗, a∗ and pass Σ-protocol and
chameleon hash verifications. However, c1, c2m∗ , a

∗ are part of
Hash1(c1,

c2
m∗ , a

∗, x,crs) hash and any strategy to adjust in-
puts to get a specific hash output implies finding a collision for
Hash1, which is a collision-resistant by assumption. Similarly,
if we find pair e∗, a∗ that together with ψ∗ passes chameleon
hash verification, then in order to adjust z∗ to pass Σ-protocol
verification we need to break soundness of the underlying Σ
protocol.

IV. CAST-AS-INTENDED VERIFICATION

This section sketches CAI verification mechanism based on
trapdoor zero-knowledge proof scheme from section III that
provides universal assurance of ballot correctness. Note that
the sketch focuses only on CAI verification and omits many
important steps such as authentication, credential generation,
election constitution, tallying etc. Therefore we assume that
crs = (p, q, g, pk,M = (m1, . . . ,mn),aux) is already pre-
generated and is known to all parties. Also we assume, that
each voter already has a pair of signing keys (pks, sks).

The CAI scheme consists of the following algorithms:
GenEncAndCommit takes as input a voting option mi ∈M

and does the following:

Samples randomness r $← Zq
Encrypts the selection c = (c1, c2)← Encpk(mi; r).
Gets the chameleon hash keys (h, x)← GenKeys().
Computes n − 1 simulated proofs {πj}nj=1,j 6=i, where
πj = (aj , ej , zj , ψj)← ZKSimulate(c,mj , h, x).

Computes ψi ← Hash1(c,crs)−∑n
j=1,j 6=i ψj .

Starts the real proof generation and commits to it
a, s,H ← NIZKProveOriginal(c,mi, h, x, ψi).

Outputs (c, r, a, s, ψi, H, h, x, {πj}nj=1,j 6=i).
FinishProofsGen takes as input the ciphertext

c, the randomness r, the challenge γ and the
values (a, s, ψi, h, x, {πj}nj=1,j 6=i) generated by
GenEncAndCommit algorithm and does the following:
πi ← ZKProveModified(c,mi, a, s, ψi, r, γ, h, x)
Outputs {πj}nj=1

GenMappingTable takes as input the ciphertext c, the
challenge γ, the proofs {πj}nj=1 and chameleon hash
keys (h, x). Then it does the following:
Computes commitments {Hj}nj=1 to all proofs, where
hj ← GetCommitment(πj , c,mj , γ).

104 Designated cast-as-intended verification and universal proof vote correctness from Chameleon hashes

XVI RECSI, Lleida 2021 T. Finogina

If ZKVerify({πj , Hj}nj=1, c, γ, h, x) outputs⊥, abort.
Else, prepares a mapping table {(γ||mj ||Hj)}nj=1.

The voting scheme consists of four entities: voter, voting
device (VD), public ballot box (BB) and auditors. We assume
that voter and auditors are trusted, while BB is a passive entity
with append only functionality.

The voting and verification of the vote happens as follows:

Voter: Selects her voting option mi ∈M and introduces mi

and her private signing key sks into the Voting device.
VD: Runs GenEncAndCommit(mi) to get values

(c, r, a, s, ψi, H, h, x, {πj}nj=1,j 6=i). Then shows H
to the voter.

Voter: Remembers H and introduces a challenge γ.
VD: Runs FinishProofsGen to get set of proofs

{πj}nj=1. Then it signs proofs and ciphertext with voter’s
signing key sks sends a ciphertext c, proofs {πj}nj=1 and
the signature to the BB.

BB: Upon receiving c, {πj}nj=1 and the signature, verifies
that voter did not already vote. If there is a vote in
database for that voter, it does nothing. Otherwise, it adds
the received values to a database and publishes them.

Auditors: Once a new vote is added to BB, they execute
GenMappingTable and publish the resulting mapping
table or mark the vote as invalid.

Voter: Goes to the public BB, checks that there is a
mapping table for her vote. Then she verifies that
published challenge γ corresponds to the challenge she
used and that commitment for her option mi is equal to
the H voting device showed here before she introduced
the challenge. This verification is equivalent to executing
ZKVerifyDesignated(H,mi, {(γ||mj ||Hj)}nj=1, γ).

Only voter herself can ensure that the ciphertext c indeed
contains an encryption of her selection mi, since only she
witnessed interaction and knows which H is correct. For
others all proofs are indistinguishable and only reveal that
an encrypted value is a valid voting option from set M .
Additionally, the scheme is a receipt-free, since an honest
voter can name any H as a value her voting device showed
her. An adversary will have to believe her, since only she
witnessed the interaction.

Therefore, this scheme is receipt-free, supports cast-as-
intended and recorded as cast verification for voter and
simultaneously provides a universal proof of vote correctness.

V. FUTURE WORK

The proposed scheme achieves receipt-freeness, however
it does not provide coercion-resistance, which is a stronger
requirement. A coercer still cannot witness interaction be-
tween a voter and her voting device, however it has more
powers over voter and can instruct a voter to behave a certain
way. For example, a coercer can force the voter to select
a specific challenge γ = F (H) for some function F . Such
choice of γ would allow coercer to ensure that voter obeyed
as the probability of a random H∗ to satisfy such constraint
is negligible.

The problem can be mitigated to some extend by outputting
H in a non-numerical form e.g. an image, however it will
not solve the problem completely, since malicious or coerced

voter might use an additional tool to revert H to the required
form.

Alternatively, e-voting application might require voter to
use a picture or some bio-metric data as a challenge γ.
However such case should be further studied as bio-metric
data is typically withing some range and a malicious voting
device can use slightly alerted γ without being caught.

Another possibility to address the coercion-resistance
would be to show voter a set of possible challenges
{γ1, . . . , γk} and ask her to select one among them. This
solution will be coercion-resistant, however it comes with the
cost of reduced soundness.

One more approach would be to include an additional
possibly malicious entity (Voting Server (VS)) and use hash-
chains to set the order of operations. In such a case, the
workflow will be slightly modified:
Voter: Introduces mi ∈M into the Voting device.
VD: Runs GenEncAndCommit, then shows H to the voter.
Voter: Remembers H and introduces her private signing key

sks.
VD: Signs the vote c and sends c and the signature to the

voting server.
VS: Verifies the signature, adds the received values to

the BB, computes and outputs a new state stk+1 =
Hash(BB, stk), where the st0 is set to some initial value.

VD: Runs FinishProofsGen using stk+1 as γ to get
proofs {πj}nj=1, signs them and sends proofs and the
signature to the Voting Server.

VS: Publishes the revived values.
Auditors: One a new vote is published, execute

GenMappingTable and publishes the resulting
mapping table on an auditors’ BB or marks the vote as
invalid.

Voter: Goes to the auditors’ BB and verifies that commitment
for her option mi is equal to the H the voting device
showed here before she introduced the signing key.

As we have shown, there are several approaches to ad-
dress the problem of combining coercion-resistant with CAI
verification without relying on trusted channels and additional
devices. Nevertheless, this direction should be further studied.

REFERENCES

[1] Ben Adida. Helios: Web-based open-audit voting. pages 335–348, 01
2008.

[2] Ivan Damgård. On σ-protocols. https://www.cs.au.dk/\∼ivan/Sigma.
pdf/.

[3] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472,
1985.

[4] Kristian Gjøsteen. The norwegian internet voting protocol. In Aggelos
Kiayias and Helger Lipmaa, editors, E-Voting and Identity, pages 1–18,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[5] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[6] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In Robert
Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 291–304. ACM, 1985.

[7] Sandra Guasch and Paz Morillo. How to challenge and cast your e-vote.
In Jens Grossklags and Bart Preneel, editors, Financial Cryptography
and Data Security, pages 130–145, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

Designated cast-as-intended verification and universal proof vote correctness from Chameleon hashes 105

T. Finogina XVI RECSI, Lleida 2021

[8] S. Heiberg and J. Willemson. Verifiable internet voting in estonia. In
2014 6th International Conference on Electronic Voting: Verifying the
Vote (EVOTE), pages 1–8, 2014.

[9] F. Karayumak, M. Kauer, M. M. Olembo, T. Volk, and M. Volkamer.
User study of the improved helios voting system interfaces. In 2011 1st
Workshop on Socio-Technical Aspects in Security and Trust (STAST),
pages 37–44, 2011.

[10] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings
of the Network and Distributed System Security Symposium, NDSS
2000, San Diego, California, USA. The Internet Society, 2000.

[11] Peter Ryan, Peter Rønne, and Vincenzo Iovino. Selene: Voting with
transparent verifiability and coercion-mitigation. volume 9604, pages
176–192, 02 2016.

106 Designated cast-as-intended verification and universal proof vote correctness from Chameleon hashes

XVI RECSI, Lleida 2021 T. Finogina

