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Abstract—In this communication we study the linear congruential
generator on elliptic curves from the cryptographic point of view. We
show that if sufficiently many of the most significants bits of the composer
and of two consecutive values of the sequence are given, then one can
recover the seed and the composer (even in the case where the elliptic
curve is private). Our results are based on lattice reduction techniques
and improve some recent approaches of the same security problem.

Index Terms—Pseudorandom congruential generators, Cryptography,
Lattice reduction, Elliptic curves.

I. INTRODUCTION

A PseudoRandom Number Generator(PRNG) is a deterministic
algorithm that, once initialized with some random value (called
the seed), outputs a sequence that appears random, in the sense
that an observer who does not know the value of the seed cannot
distinguish the output from that of a (true) random bit generator.
PRNG have important applications on simulations (e.g. for the Monte
Carlo method), electronic games (e.g. for procedural generation),
and cryptography. Good statistical properties are a vital requirement
for the output of a PRNG. Cryptographic applications require the
output not to be predictable from earlier outputs, and more elaborate
algorithms, which do not inherit the linearity of simpler PRNGs, are
needed.

There is a vast literature devoted to generating pseudorandom
numbers using arithmetic of finite field and residue rings, see [36],
[37], [44]. In 1994, Hallgreen [22] proposed a pseudorandom number
generator based on the group of points of an elliptic curve defined
over a prime finite field.

For a prime p, denote by IFp the field of p elements and always
assume that it is represented by the set {0, 1, . . . , p−1}. Accordingly,
sometimes, where obvious, we treat elements of IFp as integer
numbers in the above range.

Let E be an elliptic curve defined over IFp given by an affine
Weierstrass equation, which for gcd(p, 6) = 1 takes form

Y 2 = X3 + aX + b, (1)

for some a, b ∈ IFp with 4a3 + 27b2 6= 0.
We recall that the set E(IFp) of IFp-rational points forms an

abelian group, with the point at infinity O as the neutral element
of this group (which does not have affine coordinates).

For a given point G ∈ E(IFp) the Linear Congruential Genera-
tor on Elliptic Curves, EC-LCG is a sequence Un of pseudorandom
numbers defined by the relation

Un = Un−1 ⊕G = nG⊕ U0, n = 1, 2, . . . , (2)

where ⊕ denote the group operation in E(IFp) and U0 ∈ E(IFp)
is the initial value or seed. We refer to G as the composer of the
EC-LCG.

It is clear that the period of the sequence (2) is equal to the order
of G. The EC-LCG provides a very attractive alternative to linear
and non-linear congruential generators with many applications to
cryptography and it has been extensively studied in the literature,
see [4], [14], [18], [19], [22], [23], [38], [39].

In the cryptographic setting, the initial value U0 = (x0, y0) and
the constants G, a, and b are assumed to be the secret key, and we
want to use the output of the generator as a stream cipher. Of course,
if two consecutive values Un are revealed, it is almost always easy
to find U0 and G. So, we output only the most significant bits of
each Un in the hope that this makes the resulting output sequence
difficult to predict.

It is known that not too many bits can be output at each stage:
the Linear Congruential Generator on Elliptic Curves is unfortu-
nately (heuristically for unknown composer G and polynomial time)
predictable if sufficiently many bits of its consecutive elements are
revealed, see [21] and [33].

Now, we are formalising the results. Assume that the sequence
(Un) is not known, but for some n, approximations Wj of two
consecutive values Un+j , j = 0, 1 are given. The results involve
another parameter ∆ which measures how well the values Wj

approximate the terms Un+j . This parameter is assumed to vary
independently of p subject to satisfying the inequality ∆ < p (and
is not involved in the complexity estimates of our algorithms). More
precisely, we say that W = (xW , yW ) ∈ IF2

p is a ∆-approximation
to U = (xU , yU ) ∈ IF2

p if there exists integers e, f satisfying:

|e|, |f | ≤ ∆, xW + e = xU , yW + f = yU .

The case where ∆ grows like a fixed power pδ where 0 < δ < 1
corresponds to the situation where a positive proportion δ of the least
significant bits of terms of the output sequence remain hidden.

The paper [21] shows an algorithm to recover the seed U0 in
deterministic polynomial time if ∆ < p1/6 and G is public. The
paper in [33] can recover ’heuristically’ the seed U0 if ∆ < p1/5

and G is also public. On the other hand, the empirical results in [21]
indicate that the threshold p1/6 is more accurate than p1/5, at least
for primes p such that log2(p) < 1000. It seems that one of the
reason is the constants hidden in the asymptotic reasoning.

In this paper, we deal in the special case when we also have an
approximation to composer G. We show that given ∆ if sufficiently
many of the most significant bits of G and of two consecutive values
Un, Un+1 of the EC-LCG are given, one can recover ’heuristically’
the seed U0 and the composer G (even in the case where the elliptic
curve is private) if ∆ < p1/9.

The approach of the presented paper is similar to [21], but the
equations involved are much more complex, and we are not able to
provide a rigorous result.

In principle, we can not obtain any approximation to composer G
from any approximations to two consecutive values Un, Un+1 of the
EC-LCG, because the elliptic curve group operation.

This suggests that for cryptographic applications EC-LCG should
be used with great care.

For the linear congruential generator similar problems have been
introduced by Knuth [28] and then considered in [9], [10], [16], [25],
[29]; see also the surveys [11], [30]. The quadratic congruential
generator and the inverse congruential generator have been studied
in [6] and [17], see also the recent paper [43] for a more general
problem
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On the other hand, our results are substantially weaker than those
known for the linear and nonlinear congruential generators. In some
sense, the problem we solve can be considered as a special case of
the problem of finding small solutions of multivariate polynomial
congruences. For polynomial congruences in one variable such an
algorithm has been given by Coppersmith [12], see also [13], [24],
[26]. However in the general case only heuristic results are known.
That’s the approach of [33].

The remainder of the paper is structured as follows: we start with
a short outline of some basic facts about lattices and the abelian
group associated to an elliptic curve in Section II. In Section III we
present the algorithm. Finally, we conclude with Section IV which
shortly discuss the results of numerical tests of our approach.

II. BACKGROUND

A. Integer Lattices

Here we collect several well-known facts about lattices which form
the background to our algorithms.

We review several results and definitions of concepts related to
lattices which can be found in [20]. For more details and more recent
references, we also recommend consulting [1], [25], [34].

Let {~b1, . . . ,~bs} be a set of linearly independent vectors in IRr .
The set

L = {c1~b1 + · · ·+ cs~bs : c1, . . . , cs ∈ Z}
is called (s-dimensional) lattice with basis {~b1, . . . ,~bs}. If s = r,
the lattice L is of full rank.

To each lattice L one can naturally associate its volume:

vol(L) =

(
det
(
〈~bi,~bj〉

)s
i,j=1

)1/2

,

where 〈~a,~b〉 denotes the inner product. This definition does not
depend on the choice of the basis {~b1, . . . ,~bs}.

For a vector ~u, let ‖~u‖ denote its Euclidean norm. The first
Minkowski theorem, see Theorem 5.3.6 in [20], gives the upper
bound

min
{
‖~z‖ : ~z ∈ L \ {~0}

}
≤ s1/2vol(L)1/s

on the shortest nonzero vector in any s-dimensional lattice L in terms
of its volume.

The Minkowski bound (II-A) motivates a natural question, the
Shortest Vector Problem (SVP): how to find a shortest nonzero
vector in a lattice. Unfortunately, there are several indications that
this problem is NP-hard when the dimension grows. This study has
suggested several definitions of a reduced basis {~b1, . . . ,~bs} for a
lattice, trying to obtain a shortest vector by the first basis element ~b1.
The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [32]
provides a concept of reduced basis and an approximate solution,
enough in many practice applications.

Another related question is the Closest Vector Problem (CVP):
given a lattice L ⊆ IRr and a shift vector ~t ∈ IRr , the goal consists
on finding a vector in the set ~t+L with minimum norm. This problem
is usually expressed in an equivalent way: finding a vector in L
closest to the target vector −~t. It is well known that CVP is NP-
hard when the dimension grows.

However, both computational problems SVP and CVP are known
to be solvable in deterministic polynomial time provided that the
dimension of L is fixed (see [27], [3], [8], for example). The lattices
in this paper are of fixed (and low) dimension.

In fact, lattices in this paper consist of integer solutions ~x =
(x0, . . . , xs−1) ∈ Zs of a system of congruences

s−1∑

i=0

aijxi ≡ 0 mod qj , j = 1, . . . ,m,

modulo some positive integers q1, . . . , qm. Typically (although not
always) the volume of such a lattice is the product Q = q1 · · · qm.
Moreover, all the aforementioned algorithms, when applied to such
a lattice, become polynomial in logQ. If {~b1, . . . ,~bs} is a basis of
the above lattice, by the Hadamard inequality we have:

s∏

i=1

‖~bi‖ ≥ vol(L). (3)

B. The Group Associated to an Elliptic Curve

In this subsection we recall some basic facts about the group law
on elliptic curves.

Let E be an elliptic curve defined over IFp given by the affine
Weierstrass equation (1).

The operation ⊕ acts over the points P = (xP , yP ) and Q =
(xQ, yQ) of E(IFp) with P,Q 6= O as follows:

P ⊕Q = R = (xR, yR)

• If xP 6= xQ, then

xR = m2 − xP − xQ, yR = m(xP − xR)− yP ,
where m =

yQ − yP
xQ − xP

.
(4)

• If xP = xQ but yP 6= yQ, then P ⊕Q = O.
• If P = Q and yP 6= 0, then

xR = m2 − 2xP , yR = m(xP − xR)− yP ,

where m =
3x2P + a

2yP
.

(5)

• If P = Q and yP = 0, then P ⊕Q = O.
Our context is a pseudorandom number generator which outputs

affine points in an elliptic curve. One obtains recursively them by
operating a fixed composer G to the previous value. So, almost
always, the above equations in the first case (4) will determine the
process.

The set E(IFp) of IFp-rational points forms an abelian group
satisfying the Hasse-Weil inequality:

|# (E(IFp)− p− 1) | ≤ 2
√
p.

It is well known that the group E(IFp) is of the form

E(IFp) ∼= Z/LZ× Z/MZ,

where the integers L and M are uniquely determined with M divides
L , see [2], [7], [42] for these and other general properties of elliptic
curves.

III. THE ALGORITHM

Assume that a, b are unknown, but the prime p is given to us. We
show that when we are given ∆-approximations Ḡ to the composer
G = (xG, yG) ∈ E(IFp) and Wn, Wn+1 to (respectively) two
consecutive affine values Un, Un+1 produced by the EC-LCG; we
show that the value Un = (xn, yn) can be recovered from this
information if the approximations Wj , j = 0, 1 and Ḡ are sufficiently
good. To simplify the notation, we assume that n = 0 from now on.

We write Ḡ = (γx, γy) and Wj = (αj , βj), Uj = (xj , yj), for
j = 0, 1; so there exist integers hx, hy and ej , fj for j=0, 1 with:

xG = γx + hx, yG = γy + hy, & |hx|, |hy| ≤ ∆

xj = αj + ej , yj = βj + fj

|ej |, |fj | ≤ ∆, j = 0, 1.

(6)

So, our input of this algorithm consists of α0, β0, α1, β1, γx, γy ∈
IFp and the positive integer ∆.

42 Attacking the Linear Congruential Generator on Elliptic Curves via Lattice Techniques

XVI RECSI, Lleida 2021 J. Gutierrez



We suppose that U0 and U1 are not G or −G. Then, clearing
denominators in equations (4), we can translate

U1 = U0 ⊕G (7)

into the following identities in the field IFp:

L1 = L1(xG, yG, x0, y0, x1) ≡ 0 mod p

and
L2 = L2(xG, yG, x0, y0, x1, y1) ≡ 0 mod p,

where

L1 = xG
3 + x1xG

2 − x0xG2 − 2x1xGx0 − xGx02

+x0
3 + 2yGy0 + x1x0

2 − yG2 − y02,
L2 = y1xG − y1x0 − yGx0 + yGx1 − y0x1 + y0xG.

(8)

Using the equalities xG = γx + hx, yG = γy + hy for one hand,
and xj = αj + ej and yj = βj + fj ( j = 0, 1) for the other hand,
equations (8) become for L1 :

(3α2
0+2α0α1−2α0γx−2α1γx−γ2

x)e0+(α2
0−2α0γx+γ2

x)e1+
(−2β0 + 2cy)f0 + (−α2

0 − 2α0α1 − 2α0γx + 2α1γx + 3γ2
x)hx +

(2β0 − 2cy)hy + (3α0 + α1 − γx)e20 + (2α0 − 2γx)e0e1 +
+ (−2α0 − 2α1 − 2γx)e0hx + (−2α0 + 2γx)e1hx +
+ (−α0 + α1 + 3γx)h2

x +
e30 +e20e1−e20hx−2e0e1hx−e0h2

x+e1h
2
x+h3

x−f2
0 +2f0hy−h2

y

=

−α3
0−α2

0α1+α2
0γx+2α0α1γx+α0γ

2
x−α1γ

2
x−γ3

x+β2
0−2β0cy+c2y

and for L2 :
(−β1−γy)e0 +(−β0 +γy)e1 +(−α1 +γx)f0 +(−α0 +γx)f1 +

(β0 + β1)hx + (−α0 + α1)hy +
− e1f0 − e0f1 + f0hx + f1hx − e0hy + e1hy

=
α1β0 + α0β1 − β0γx − β1γx + α0γy − α1γy

Now, we linearize this polynomial system. Writing

A0 ≡ −α3
0 − α2

0α1 + α2
0γx + 2α0α1γx + α0γ

2
x − α1γ

2
x − γ3

x + β2
0

−2β0cy + c2y mod p,

A1 ≡ 3α2
0 + 2α0α1 − 2α0γx − 2α1γx − γ2

x mod p,

A2 ≡ −2β0 + 2cy mod p, A3 ≡ −2β0 + 2cy mod p, A4 ≡ 0 mod p,

A5 ≡ −α2
0 − 2α0α1 − 2α0γx + 2α1γx + 3γ2

x mod p,

A6 ≡ 2β0 − 2cy mod p, A7 ≡ 3α0 + α1 − γx mod p,

A8 ≡ 2α0 − 2γx mod p, A9 ≡ −2α0 − 2α1 − 2γx mod p,

A10 ≡ −2α0 + 2γx mod p, A11 ≡ −α0 + α1 + 3γx mod p,

A12 ≡ 0 mod p, A13 ≡ 1 mod p,

B0 ≡ α1β0 + α0β1 − β0γx − β1γx + α0γy − α1γy mod p,

B1 ≡ −β1 − γy mod p, B2 ≡ −β0 + γy mod p,

B3 ≡ −α0 + γx mod p, B4 ≡ −α0 + γx mod p,

B5 ≡ β0 + β1 mod p, B6 ≡ −α0 + α1 mod p, B7 ≡ 0 mod p

B8 ≡ 0 mod p, B9 ≡ 0 mod p, B10 ≡ 0 mod p, B11 ≡ 0 mod p,

B12 ≡ 1 mod p,
(9)

we obtain that vector
~E =
(∆2e0,∆

2e1,∆
2f0,∆

2f1,∆
2hx,∆

2hy,∆e
2
0,∆e0e1,∆e0hx,

∆e1hx,∆h
2
x,∆(−e1f0 − e0f1 + f0hx + f1hx − e0hy + e1hy),

e30+e20e1−e20hx−2e0e1hx−e0h2
x+e1h

2
x+h3

x−f2
0 +2f0hy−h2

y)
=
(∆2E1,∆

2E2,∆
2E3,∆

2E4,∆
2E5,∆

2E6,∆E7,∆E8,∆E9,∆E10,
∆E11,∆E12, E13)
is a solution to the following linear system of congruences:

6∑

i=1

AiXi +

12∑

i=7

∆AiXi + ∆2A13X13 ≡ ∆2A0 mod p,

6∑

i=1

BiXi +

12∑

i=7

∆BiXi + ∆2B13X13 ≡ ∆2B0 mod p,

X1 ≡ X2 ≡ X3 ≡ X4 ≡ X5 ≡ X6 ≡ 0 mod ∆2,

X7 ≡ X8 ≡ X9 ≡ X10 ≡ X11 ≡ X12 ≡ 0 mod ∆.
(10)

Moreover, ~E is a relatively short vector.
Let L be the lattice consisting of integer solutions ~X =

(X1, X2, . . . , X13) ∈ Z13 of the system of congruences:

6∑

i=1

AiXi +

12∑

i=7

∆AiXi + ∆2A13X13 ≡ 0 mod p,

6∑

i=1

BiXi +

12∑

i=7

∆BiXi + ∆2B13X13 ≡ 0 mod p,

X1 ≡ X2 ≡ X3 ≡ X4 ≡ X5 ≡ X6 ≡ 0 mod ∆2,

X7 ≡ X8 ≡ X9 ≡ X10 ≡ X11 ≡ X12 ≡ 0 mod ∆.
(11)

We compute a solution ~T of the system of congruences (10), using
linear diophantine equations methods. Applying an algorithm solving
the CVP for the shift vector ~T and the lattice L, we obtain a vector
~F =
(∆2F1,∆

2F2,∆
2F3,∆

2F4,∆
2F5,∆

2F6,∆F7,∆F8,∆F9,∆F10,
∆F11,∆F12, F13)
We have ~F = ~v+ ~T (where ~v is the lattice vector returned by the

CVP algorithm) is the vector of minimal norm satisfying equations
(10), hence ~F must have norm at most equal to the norm of the
solution ~E. Note that we can compute ~F in polynomial time from
the information we are given. We might hope that ~E and ~F are the
same.

The so-called “Gaussian heuristic” suggests that and s-
dimensional lattice L with volume vol(L) is unlikely to have
a nonzero vector which is substantially shorter than vol(L)1/s.
Moreover, if it is known that such a very short vector does exist,
then up to a scalar factor it is likely to be the only vector with this
property. On the other hand, the volume of the 12-dimensional lattice
L defined by equations (11) is;

vol(L) = p2∆12∆6 = p2∆18

Then, vector ~E is likely to be the one founded whenever

∆3 < p2/12∆18/12,

this is,
∆ < p1/9

IV. COMPUTATIONAL RESULTS

We have proposed an algorithm to recover a sequence of pseudo-
random numbers produced by EC-LCG. The input required include
approximations to some pseudorandom values. The quality of those
approximations is the measure used to characterise when the algo-
rithm output the expected sequence.

We have performed some numerical tests with a SAGEMATH

implementation. First, we generate an elliptic curve over a prime
finite field of a desired size by choosing randomly in IFp parameters
a, b for the equation Y 2 = X3 + aX + b. Then, we generated
randomly some composers G and some points in the curve by
choosing the first coordinate and trying to solve the equation.
For several composers and points, and EC-LCG is simulated, and
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approximations to some composer and some consecutive values are
given as input to our algorithm. We have selected several primes of
several sizes and note the obtained success threshold.
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